Quantum Poincaré Algebra and a Quantum Positivity of Energy Theorem for Canonical Quantum Gravity
نویسنده
چکیده
We quantize the generators of the little subgroup of the asymptotic Poincaré group of Lorentzian four-dimensional canonical quantum gravity in the continuum. In particular, the resulting ADM energy operator is densely defined on an appropriate Hilbert space, symmetric and essentially self-adjoint. Moreover, we prove a quantum analogue of the classical positivity of energy theorem due to Schoen and Yau. The proof uses a certain technical restriction on the space of states at spatial infinity which is suggested to us given the asymptotically flat structure available. The theorem demonstrates that several of the speculations regarding the stability of the theory, recently spelled out by Smolin, are false once a quantum version of the pre-assumptions underlying the classical positivity of energy theorem is imposed in the quantum theory as well. The quantum symmetry algebra corresponding to the generators of the little group faithfully represents the classical algebra.
منابع مشابه
Hermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملQuantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure
We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...
متن کاملEffects of on-center impurity on energy levels of low-lying states in concentric double quantum rings
In this paper, the electronic eigenstates and energy spectra of single and two-interacting electrons confined in a concentric double quantum rings with a perpendicular magnetic field in the presence of on-center donor and acceptor impurities are calculated using the exact diagonalization method. For a single electron case, the binding energy of on-center donor and acceptor impurities ar...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008